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J .  Phys. A:  Math. Gen. 22 (1989) 4959-4970. Printed in the U K  

Non-universal critical dynamics of the one-dimensional 
Potts models 

M Silvirio Soarest and J Kamphorst Leal da Silva 
Departamento de Fisica, lnstituto de CiCncias Exatas, Universidade Federal de Minas 
Gerais, C P  702, 30161 Belo Horizonte MG, Brazil 

Received 26 May 1989 

Abstract. The one-dimensional kinetic Potts models are studied for both Glauber and 
Kawasaki dynamics with different transition rates. Rigorous lower bounds for the dynami- 
cal exponent ( I )  are obtained from the initial response rate and the scaling hypothesis for 
the relaxation time. It is shown that the z exponent is non-universal for several periodic 
models with a basic unit cell ( J ,  , J ? , .  . . , J ,  ) containing different couplings constants. The 
critical dynamics of the alternating bond models is also studied by a simple argument 
about the movement of domain walls. 

1. Introduction 

One of the simplest models exhibiting non-trivial dynamic behaviour is the kinetic 
Ising model (Glauber 1963). I t  consists of an Ising model with a stochastic dynamics. 
Near the critical temperature one speaks of critical dynamics. According to the 
dynamical scaling hypothesis (Hohenberg and Halperin 1977), when the critical tem- 
perature is approached the relaxation time of the system diverges as 

where 6 is the static correlation length, z is the critical dynamical exponent and k is 
the appropriate critical wavevector. One important point is the classification of the 
physical systems into dynamical universality classes. I t  turns out that the z exponent 
depends not only on static properties but also on dynamical aspects, such as the 
conservation laws entering the dynamics (Hohenberg and Halperin 1977). 

In recent years the question of the universality of the z exponent in one dimension 
has been discussed in the literature. I t  is well known that the z exponent depends on 
the transition rates (Haake and Tho1 1980), which can be chosen in several different 
forms once the detailed balance has been satisfied. More surprising is the non- 
universality due to the spatial non-uniformity of the interactions (Droz er al 1986a, 
Luscombe 1987, Angles d'Auriac and Rammal 1988). It is worth mentioning that this 
non-universal behaviour occurs for fixed transition rates, implying that the non- 
universality is related to intrinsic properties of the system (i.e. the interactions). 

In this paper we consider the Q-state Potts kinetic model in one dimension (for a 
review of the static properties see Wu (1982)). I t  is, perhaps, the simplest generalisation 
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of the kinetic lsing model. Some dynamical aspects of this model have already been 
discussed in the literature. In  particular, it has been discussed that the z exponent 
depends on the transition rates and on the number of states ( 0 )  (Lage 1985, Droz et 
a1 1986b, Weir er a /  1986). Here we investigate the dependence of the dynamic 
behaviour on the spatial non-uniformity of the interactions both for the relaxational 
dynamics (Glauber dynamics) and diffusive dynamics (Kawasaki dynamics). Unable 
to solve the equations of motion exactly, we obtain information about critical dynamics 
from the initial response rate of the order parameter (conventional theory) (Halperin 
1973). Using the scaling hypothesis for the relaxation rate we are able to obtain a 
rigorous lower bound for the z exponent. Therefore we prove that z is non-universal 
for several models in which the basic cell contains different coupling constants 
( I , ,  J 2 ,  J 3 , .  . . , &,). Naturally, the dynamical exponent depends also on the transition 
rates. For the alternating bond models ( J , ,  J 2 ,  J ,  , J 2  . . .), the z exponent is found also 
by the domain wall argument (Cordery et a1 1981) for both dynamics. 

This paper is organised as follows. In  the next section we find the equilibrium 
properties of the Potts model in  one dimension and  discuss the dynamics (Glauber 
and  Kawasaki dynamics). In D 3 we present in detail the initial response and  derive 
the lower bounds. The z exponent for Glauber dynamics with several transition rates 
can be found in D 4. The non-universality of the dynamical exponent for Kawasaki 
dynamics is discussed in D 5.  The domain wall argument is applied to the alternating 
bond models for both dynamics in D 6. The conclusions are presented in the last section. 

2. The dynamic models 

We consider the Q state Potts chain described by the following reduced Hamiltonian 
with N variables 

where 6,,,. is the Kronecker delta, K, = J , / (  k B T )  and J ,  is the next-nearest-neighbouring 
interaction couplings. The interaction couplings are periodically distributed with a 
basic cell ( J , ,  J2 . . . &).  

The equilibrium properties are easily found by the transfer matrix technique. The 
critical temperature is zero ( T ,  = 0) and the correlation length is given by 

Near the critical temperature, the correlation length depends only on the smallest 
interaction J ,  of the basic cell, i.e. 

5 - Q-’ exp(Ks) T+O. (2.3) 
If we evaluate the static critical exponents, we find that they are universal in the sense 
that they d o  not depend on the interactions. 

The Glauber dynamics (Glauber 1963) is given by the master equation for P ( { q } ,  r ) ,  
the density probability that the configuration { q ,  , q 2 .  . . q N }  is realised at time t :  
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Here w, ( {q} : ,  { q } )  stands for the transition rate of the {sl ,  q 2 . .  . 4:.  . . ql\.} configuration 
to the { q , ,  q ? .  . . 9 , .  . . q N }  one. I n  order to assure the equilibrium distribution at long 
times, the transition rates must obey the detailed balance condition, namely 

(2.5) 

where Peq({ q } )  is the equilibrium probability. This condition determines only partially 
the transition rates. So we can choose w , ( { 9 } ,  { q } : )  in several forms (Haake and  Tho1 
1980). In  the next sections we will consider two different rates. 

The Kawasaki dynamics (Kawasaki 1972) has the order parameter (i.e. the magneti- 
sation) conserved. It is described by the following master equation: 

w,({q}:, {q})peq({q}: )  = w , ( { q } ,  {q}: )peq({q})  

where W,({q} ,  { q } : )  is the transition rate of the configuration { q l ,  q.. . . q,, qlTI  . . . q N }  
to the { q l ,  qr . . . 9,+, , 9,. . . q h }  one. Note that only the q, and 4 , r l  states have 
exchanged. Again we impose the detailed balance condition. We have that 

(2.7) 
Again the transition rates can be chosen in different ways. So we consider in Q 5 the 
most used transition rates. 

W, ({  9) :, { 9 1 )  peq( { 9 1 : 1 = W, ({  41. { 9 1 : 1 peq({ 41 1. 

3. The initial response 

The purpose of this section is to establish a rigorous lower bound for the relaxation 
time of the system as has been done for the k i n g  model (Halperin 1973). Firstly the 
Glauber dynamics will be considered. 

Let us introduce a function 4, defined by 

P ( { q } ,  t )  = peq({q})4({9}3 (3.1) 
Using this definition, the master equation (2.4) can be written as 

where the D, operator is defined by 

(3.3) 

The formal solution of equation (3.2) is given by +(Is}, t )  = exp[-D4t]4({q}, 0). From 
(3.3) we can see that Dq is a real operator and  using the detailed balance is easy to 
show that it has the following properties: 

(s” Dqg)eq = ( gD4.P ) e q  (g*Dqg)eq 5 0. (3.4) 
Here f and g are arbitrary functions of ( 4 ) .  Thus the eigenvalues v, of the operator 
D, are real and  non-negative. We consider the time-dependent autocorrelation function 
of g 

where g [  t ]  = exp( -D,t)g. It has a spectral representation of the form 
Cg(t)  = (g*[Olg[tl)eq - (g*[Olg[~l )eq  (3.5) 

cp,( v )  expl-vt)  dv (3.6) 
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with cp,( v )  3 0 for all v. We define the characteristic rime ( T ~ )  and the inirial relaxation 
rate (v,) for the variable g by 

T~ = C,(O)-' lox C,(t)  dr  

(3 .7)  
d 
d r  l = O  

vg = --cg(0)-I - C,(t)J . 

These equations can be written in the spectral representation. Then one applies the 
Schwartz inequality to derive the relation 

(3.8) 
Let q ( k )  be the Fourier transform of the q1 variables, namely 

- 1  
Tg 3 V p  . 

N 

q ( k )  = N-1'2 exp( ik-  r i )q8 .  
i = l  

(3 .9)  

If we put g = q ( k ) ,  T~ is the relaxation time of the system for the appropriate k ( k  = 0 
in our case). In  order to use inequality (3 .8) ,  we must evaluate the initial rate ( v q l k ) ) .  

The equal time correlation function is proportional to the static susceptibility X k ,  i.e. 
C q ( k ) ( O )  = k B T X k *  (3.10) 

We have also that 

(3.11) 

It is easy to show that Dq4, 
of Dq. Therefore (3.11) can be written as 

w , ( { q } ,  { q } L ) [ 4 , , , - q L ]  from the definition (3 .3)  

and the inequality (3 .8)  as 

(3.12) 

(3 .13)  

Let us consider now the Kawasaki dynamics. The function defined in (3.1) is 
inserted into the master equation (2 .6) .  Then we can write an  equation similar to (3 .2) .  
But we must define a new operator D Y )  as 

N 

Again properties (3 .4)  hold and  the eigenvalues of DkK' are real and  non-negative. 
Moreover one finds 

Here a is a vector between neighbouring sites. Finally, the inequality for the relaxation 
time of the system is given by 

(3.16) 

Inequalities (3.13) and (3.16) are the essential results of this section. They will be used 
in the next two sections to derive the lower bounds for the z exponent. 

Nk B T x k  

2[1-cos(k. a ) ]  x m  (qm(qm -qm+l)Wm({q) ,  {q)h))eq' 
r q l k ) 3  
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4. The Glauber dynamics 

4.1. The exponential transition rate 

First let us consider the Glauber dynamics of the Potts model with the following 
transition rate: 

This rate satisfies the detailed balance condition ( 2 . 5 )  and has been used in the literature 
(Forgacs et a1 1980). In order to find a lower bound for the critical dynamic exponent 
we must evaluate the expression 

(4.3) 

Here Z is the partition function of the model. It is easily seen that all transfer matrices 
commute. Therefore, they can be diagonalised simultaneously. The eigenvalues of the 
matrices L, and MI are given respectively by 

= exp( $) - 1 ( Q  - 1)-fold degenerate (4.5) 

= exp( K , )  + Q - 1 

= exp( K, )  - 1 ( Q  - 1 )-fold degenerate. 

The next step is to express the elements of the L, and M, matrices in terms of their 
respective eigenvalues and  eigenvectors. For example, we have that 

,=/+I n = I  , = / + I  

where &(9 , )  is the 9, element of the eigenvector 4,,. Obviously, the partition function 
can also be written in terms of the eigenvalues So, in the thermodynamic limit, 
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Using the following relations 

we can write (4.7) as 

(4.9) 

where the eigenvalues are given by (4.5). Near zero temperature the behaviour of A 
is given by 

(4.10) 

Clearly this sum is dominated by exp[-( 1/2)( K,+ Kg-l)] ,  the largest term appearing 
in the sum (4.10). Consequently (3.13) can be written as 

(4.11) 

Assuming the scaling form (1.1) for the relaxation time, the following lower bound 
for the z exponent is obtained: 

(4.12) 

When the smallest interaction ( J , )  in the model has, at least, another J ,  interaction as 
neighbouring bond, the expression above gives us a trivial lower bound ( z  2 2). 
However, for all models in which the smallest interactions have neighbouring bonds 
different from J , ,  we have from (4.12) a non-universal critical dynamic exponent. 

J,-1 + J ,  

2 Js 
z31+-. 

4.2. The large transition rate 

Another interesting transition rate, which gives a Q-dependent dynamical exponent is 
the one used by Lage (1985), namely 

(4.13) 

Again, we must evaluate (4.2) by the transfer matrix technique. The matrix M has 
the same definition as before but now we must define a new matrix L which is given 
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by L , ( q , , q , , , ) = e x p ( - K , 6 , , . , , , ~ , ) .  The eigenvalues of L are A , , , = e x p ( - K , ) + Q - l  and  
A,,z = exp(-K,) - 1 (Q-fold degenerate). In  the same lines as before we find that 

A =  [exp(-K,_, - K , )  + - I ] - '  
[ e x p ( K , - , ) + Q - l ] [ e x p ( K , + Q - 1 ]  

(4.14) 

In this formula we can see that the behaviour near T = 0 of the case Q = 2 is different 
from the case with Q > 2 ,  because of the last term of (4.14). When Q = 2 the behaviour 
of A near the critical temperature is given by 

(4.15) 
r v  

A - -  C [exp(K,-,)+exp(K,)I- ' .  
N , = I  

We can see that A is dominated by the smallest term exp(K,)+exp(K,-,) .  If'J,> 
we can write (3.13) as 

TYi0) 3 t I + ' J .  '%'. (4.16) 

Then one obtains that z z 1 + ( J , / J s ) .  In the models where the neighbouring interactions 
of the smallest ones (1,) are different from J,I we obtain a non-universal behaviour. 
It is worth mentioning that for the isotropic case ( J ,  = J for all i )  and for the alternating 
bond model ( J 2 ,  = J ,  and J 2 , + ,  = JI) ,  the lower bounds coincide with the exact results 
( z  = 2 and z = 1 + ( J , / J J ,  respectively (Droz et a1 1986a)). 

For Q > 2 ,  the equation (4.14) can be written near T = 0 as 

A - 2 exp(-K, - K, - , ) .  (4.17) 

Therefore we can obtain the following lower bound for the critical dynamic exponent: 

(4.18) 

where Jg-I +Jg is the smallest sum of all pairs of next-neighbouring interactions in the 
chain. So we prove the non-universal behaviour for all models which d o  not have the 
sequence J J ,  in the basic cell. 

I - I  

J ,  + J,-I 

J ,  
z31+-  

5. The Kawasaki dynamics 

5.1. The exponential transition rate 

Let us now concentrate our attention on the Kawasaki dynamics with the transition 
rates defined by 

(5.1) 
This rate has also been used in the literature (Droz er a1 1986b). We must evaluate 
the expression 

( 5 . 2 )  
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in order to obtain a lower bound for the z exponent by using inequality (3.16). Again 
we must use the transfer matrix technique. Following the same lines as in the previous 
section, we obtain 

Here the eigenvalues are given by (4.5). Near zero temperature is easy to find the 
behaviour of E, namely 

(5.4) 

If J,, ( J g - , / 2 ) ,  ( Jg+l /2)  are the smallest three neighbouring bonds in the model, B has 
a behaviour near the critical temperature dominated by exp[ - K, - (K,-, /2) - 
(K,+,/2)]. Therefore assuming the scaling behaviour (1.1) for the relaxation time, we 
find from inequality (3.16) ihat 

2Jg+Jg-,+Jg,,  
25s 

z23+ (5.5) 

So, for all models that d o  not have three adjacent smallest interactions, the z exponent 
is non-universal. 

5.2. The Kawasaki transition rate 

Let us consider now the transition rates introduced by Kawasaki, namely 

w,({ql, {9}:)=2r(1-~,,,,,+,)[1+exP{-K,-I(Sq, , , q , + , - 8 q , . q ,  0 
- KI+l(84,.%+?- 8 Y , + , . Y , + 2 ) } l - I *  (5.6) 

Following the same lines as before, we find after some algebra that near T = 0 ,  B 
behaves as 

N 

N-' exp(-K, - K , )  
) = I  

(5.7) 

where K ,  = K , - l  if Kj-' > KJ+, or K, = K,+, in the other case. Then we can obtain that 

J, + J, z>3+-  
Js 

( 5 . 8 )  

where exp(J,+J,)  is the smallest term in the sum (5.7). The non-universal behaviour 
is proved for all models without the sequence J,, J,, J, in the chain. 

5.3. The large transition rate 

The last step is to study the extension to Kawasaki dynamics of the Lage transition 
rate (Droz et a1 1986b). It can be defined as 
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Following the same steps as before, we find after some algebra that 

~ 3 + Jg  + J g -  1 + J g +  I 

J ,  
(5.10) 

In  this case the non-universal behaviour is proved for all models that do not have 
three adjacent J ,  bonds in the basic cell. Note that for the isotropic case ( J ,  = J  for 
all i )  we obtain that z 3 6. This result does not agree with the one found by Droz et 
a1 (1986b) namely z = 5, by domain wall arguments. This point will be made clearer 
in the next section. 

6. The domain wall argument for the alternating bond models 

The results obtained in the last two sections can be reproduced for the alternating 
bond models by a simple physical argument about the movement of domain walls. 
The argument has been proposed for the Ising model (Cordery et a1 1981) and has 
been also used in the study of the homogeneous Potts model (Droz et a1 1986b). The 
behaviour of the relaxation time near T = 0 is determined by the time (7,) it takes for 
a domain wall to move a distance 6 in the fastest way. Computing this time by random 
walk arguments we can find the z exponent using T ,  - 6'. If the chosen mechanism 
of motion of the wall is the fastest possible then the resulting value of z should be an 
upper bound to the exact one (Cordery et a1 1981). As a matter of fact, this approach 
leads to the exact values of z for all one-dimensional cases for which the answer is 
known. 

Let us consider first the Glauber dynamics of the alternating bond model ( J , ,  J , ,  
J , ,  J ,  . . .) with the transition rates defined by (4.1). One can see by inspection that the 
domain wall movements are still the fastest mechanism. A domain wall makes two 
steps in a time given on average by {l/w("}+{l/w'*'}. Here w")  (w"') corresponds 
to the flipping rate of the spins at the domain wall when we have a J ,  ( J , )  interaction 
between the two domains. To move a distance 6, the wall must make t 2 / 2  steps. Then, 
it is easy to find that 

(6.1) 

From (4.1) we find that near the zero temperature, the behaviour of those rates is 
given by 

r exp[ -f(  K ,  - K, ) ]  w (  1 1  -- 
w i ? l -  - r exp[-+( K ,  - K , ) ] .  

Therefore the z exponent, given by z =[3+(JI /J , ) ] /2 ,  is equal to the lower bound of 
(4.12). 

Let us now consider the Lage transition rates (4.13). Again, the fastest mechanisms 
are the wall movements and wi l ' , ( 2 '  are given by 

wl:) - - r  exp( - K ,  1 
exp(-K,) +exp( - K l )  + Q - 2'  (6.3) 



4968 M S Soares and J Kamphorsr Leal da Silva 

I f  Q = 2 ,  we find that z = 1 + ( J , / J J .  This value coincides with the lower bound (4 .16)  
and with the exact value (Droz et a1 1986a). In the other cases ( Q > 2 ) ,  we obtain 
that z = 2 + ( J , / J , ) .  This value is equal to the lower bound (4 .18) .  

The domain wall argument can also be applied to the Kawasaki dynamics. In  this 
case, the domain walls do not move independently. So we must consider the movement 
of the spins. Near zero temperature and at long times two situations are important in 
dynamics. In the first case the interaction between two domains is J ,  (see figure l ( a ) ) ;  
in the other one the interaction is J , .  Let us discuss in details the first situation, which 
is depicted in figure 1. The discussion of the second situation is similar. Firstly, the 
spins at the domain wall (spins i and is1 in figure l ( a ) )  are exchanged with a rate 
W"'= W , ( { q } ,  (9):). Then we have the situation depicted in figure l ( b ) ,  in which the 
exchange rate W, between spins i and i f 1  is greater than W,+,,  the exchange rate 
between spins i +  1 and i + 2 .  So the probability y ,  that the up spin gives the first step 
directed to the middle of the down spin domain is given by y ,  = W1+,/(  W, + W,+,). 
Obviously, the probability that the first step be in direction of the nearest domain wall 
is 1 - y ,  . After the exchange between spins i + 1 and i + 2 in figure 1 (  b ) ,  we have an 
up spin performing a random walk in a domain of down spins (see figure l ( c ) ) .  Thus 
the up spin moves through the domain and comes out at the other side. For a domain 
of size 5 this happens with probability P y ) - [ y l / ( l  -yl)]6-'  (Harris 1983). If the first 
spin of the domain is exchanged at the wall with a rate W'I),  the second spin will be 
exchanged with a rate W'". This corresponds at the second situation, in which we 

Figure 1. Important configurations for the domain wall argument applied to Kawasaki 
dynamics. ( a )  The spins i and i + 1 are exchanged with a small rate W"';  ( b )  the exchange 
rate between spins i and i +  1 is greater than the one between spins i +  1 and i+2; ( c )  the 
up spin performs a random walk. 
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have a J, interaction between two domains. Thus the whole domain has moved two 
steps in an  average time [ l / (  Py) W”’)+ l/(P;” W”’)], where P:2’-[y2/(l -y2)](-’. 
To move a distance (, the domain wall must make ( I  steps. Therefore we have that 

Considering the transition rates given by (5.1) we have that y, = € - I J )  ’>I and yl = 5-l. 
Evaluating W“’ and W”’ i t  is easy to find that 

16.5) 

The lower bound (5.5), given by zLB = 4 + ( J , / J , ) ,  is smaller than the exponent found 
with the domain wall argument for J, > J,. But the value (6.5) would be the exact 
value. It is worth mentioning that in Kamphorst Leal da  Silva (1986) a wrong exponent 
( z  = 3 + ( J,/ Jz))  has been found for the Ising model because the probability ya has not 
been considered. 

z = 3 + 2 JI/ J, . 

In  the case of the Ldge transition rates (5.9),  we find that 

z = 4 + 2 J, / J, . (6.6) 

Here we have that y l  - (?J1 ’.I and y2- 5-l. Since this probability has been considered 
as a constant independent of the temperature by Droz et a1 (1986b), a wrong exponent 
has been found for the isotropic model ( z  = 5 instead of z = 6). Note that in this 
problem an  up  spin in the middle of a down spin domain exchanges with a non- 
symmetrical rate proportional to (-’. This means that the up  spin takes a long time 
to traverse the domain. However, this time is not long enough to invalidate the domain 
wall argument. 

Finally let us consider the Kawasaki rates (5.6). In  this case the probability y, is 
not important because it has a constant value (y, =f) .  We find, after some algebra, 
that the z axis exponent is given by 

z = 3 + 2 J , / J , .  (6.7) 

This value is greater than the lower bound ( z L B = 4 + ( J I / J 5 ) )  of expression (5.8) but 
i t  would agree with the exact value. 

7. Conclusions 

The relaxational and diffusive kinetic Potts model in one dimension has been studied 
for several transition rates. The main conclusion is that the dynamical exponent 
depends on the sptatial non-uniformity of the coupling strengths. From the initial 
response rate of the system and the scaling behaviour of the relaxation time, rigorous 
lower bounds for the 2 exponent have been established. We have obtained essentially 
that 

where A is the kinetic coefficient given by (4.2) for Glauber dynamics and by ( 5 . 2 )  
for Kawasaki dynamics. Dynamic non-universality arises from the nonuniversal vanish- 
ing of this coefficient, which depends on local equilibrium correlations. A goes to zero 
only because the critica! temperature is T, = 0. The non-universal exponent is therefore 
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a consequence of zero critical temperature. In dimensions greater than one we d o  not 
expect non-universal behaviour because the kinetic coefficients are probably finite. In 
this case (7.1) gives us only the inequalities z 3 y /  v for the Glauber dynamics and  
x s 2 + ( y / v )  for the Kawasaki one. It is worth mentioning that the initial response 
can be used efficiently in one-dimensional periodic models to prove non-universal 
dynamical behaviour. For disordered models, however, we obtain only a trivial lower 
bound. This happens because sequences of interactions, which are forbidden in our  
proof (for example, the S,, J , ,  J ,  sequence), certainly appears when the disorder average 
is made. 

For the alternating bond model, the non-universal behaviour has been explained 
by the domain wall argument, a simple microscopic mechanism. For Glauber dynamics 
the z exponent found by this argument is equal to the lower bound of the initial 
response. This does not happen for the Kawasaki dynamics when different interactions 
are present in the basic cell. It could be interesting to d o  Monte Carlo simulation in 
order to decide if the z exponent found by the domain wall argument is the exact one. 
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